WTI Crude

Loading...

Brent Crude

Loading...

Natural Gas

Loading...

Gasoline

Loading...

Heating Oil

Loading...

Rotate device for more commodity prices

Alt Text

Dear Millennials, Big Oil Is Not Your Enemy

The common perception of the…

Alt Text

Citi: U.S. Shale Beats OPEC At $40 Oil

Citigroup analysts say that U.S.…

Alt Text

Higher Oil Prices Slash Saudi Deficit

Higher oil prices in the…

Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

This Is Why Your Lithium Battery Doesn’t Age Well

City

An Argonne National Laboratory team of researchers has identified one of the major culprits in capacity fade of high-energy lithium-ion batteries. Scientists refer to a battery becoming old is its diminished performance as “capacity fade,” as the amount of charge a battery can supply decreases with repeated use.

(Click to enlarge)

When manganese ions (gray) are stripped out of a battery’s cathode (blue), they can react with the battery’s electrolyte near the anode (gold), trapping lithium ions (green/yellow)

Capacity fade is the reason why a cell phone battery that used to last an entire day will, after a couple of years, last perhaps only a few hours.

Researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory identified one of the major culprits in capacity fade of high-energy lithium-ion batteries in a paper published in The Journal of the Electrochemical Society.

But what if scientists could reduce this capacity fade, allowing batteries to age more gracefully?

For a lithium-ion battery – the kind that we use in laptops, smartphones, and plug-in hybrid electric vehicles – the capacity of the battery is tied directly to the amount of lithium ions that can be shuttled back and forth between the two terminals of the battery as it is charged and discharged. Related: World Bank Maintains Oil Price Forecast At $55

This shuttling is enabled by certain transition metal ions, which change oxidation states as lithium ions move in and out of the cathode. However, as the battery is cycled, some of these ions – most notably manganese – get stripped out of the cathode material and end up at the battery’s anode.

Once near the anode, these metal ions interact with a region of the battery called the solid-electrolyte interphase, which forms because of reactions between the highly reactive anode and the liquid electrolyte that carries the lithium ions back and forth. For every electrolyte molecule that reacts and becomes decomposed in a process called reduction, a lithium ion becomes trapped in the interphase. As more and more lithium gets trapped, the capacity of the battery diminishes.

Some molecules in this interphase are incompletely reduced, meaning that they can accept more electrons and tie up even more lithium ions. These molecules are like tinder, awaiting a spark.

When the manganese ions become deposited into this interphase they act like a spark igniting the tinder: these ions are efficient at catalyzing reactions with the incompletely reduced molecules, trapping more lithium ions in the process.

Study coauthor and Argonne scientist Daniel Abraham said, “There’s a strict correlation between the amount of manganese that makes its way to the anode and the amount of lithium that gets trapped. Now that we know the mechanisms behind the trapping of lithium ions and the capacity fade, we can find methods to solve the problem.”

It won’t be a very long spell until the chemistry issues are worked out in battery production. These is more to do in research, but the big clue is in hand. Meanwhile, we’ll just keep on buying, replacing and recycling those batteries.

By New Energy And Fuel

More Top Reads From Oilprice.com:




Back to homepage


Leave a comment
  • Josh Gregner on April 29 2017 said:
    This is an issue (even though a lesser and lesser one) for cameras, cellphones and computers. Because many of these devices get fully cycled once a day or even worse. For cars? Not so much of a problem - provided you get your BMS right.

    Why? Simple: Modern Lithium-Ion batteries can easily take 1500 cycles. And even the smallest Tesla gets in excess of 250 miles per charge. Let's assume that both number are hopelessly wrong and outrageously optimistic. Let's assume that a car only gets you 200 miles each of only 1000 cycles. That's still that "gold standard" 200.000 mile mark, that many cars don't ever reach in their entire life. And that's the smallest Tesla available, that's the pessimistic worst-case and it is far from the the great numbers that Tesla drivers report since 2012.

    PS: Did you know that charging your Lithium battery half only counts as half a cycle? Fell free to plug-in whenever you like - it doesn't matter for the battery life (in fact it is slightly better to keep the battery never fully discharged / fully charged).
  • Dave Hrivnak on April 30 2017 said:
    I am not sure this is as big of a problem as the author lets on. My 9+ year old EV still has right at 90% of its new capacity. And I I have yet to change the oil or service the bakes.

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News