• 30 mins Enbridge Pipeline Expansion Finally Approved
  • 2 hours Iraqi Forces Seize Control Of North Oil Co Fields In Kirkuk
  • 2 hours OPEC Oil Deal Compliance Falls To 86%
  • 18 hours U.S. Oil Production To Increase in November As Rig Count Falls
  • 20 hours Gazprom Neft Unhappy With OPEC-Russia Production Cut Deal
  • 22 hours Disputed Venezuelan Vote Could Lead To More Sanctions, Clashes
  • 24 hours EU Urges U.S. Congress To Protect Iran Nuclear Deal
  • 1 day Oil Rig Explosion In Louisiana Leaves 7 Injured, 1 Still Missing
  • 1 day Aramco Says No Plans To Shelve IPO
  • 4 days Trump Passes Iran Nuclear Deal Back to Congress
  • 4 days Texas Shutters More Coal-Fired Plants
  • 4 days Oil Trading Firm Expects Unprecedented U.S. Crude Exports
  • 4 days UK’s FCA Met With Aramco Prior To Proposing Listing Rule Change
  • 4 days Chevron Quits Australian Deepwater Oil Exploration
  • 4 days Europe Braces For End Of Iran Nuclear Deal
  • 5 days Renewable Energy Startup Powering Native American Protest Camp
  • 5 days Husky Energy Set To Restart Pipeline
  • 5 days Russia, Morocco Sign String Of Energy And Military Deals
  • 5 days Norway Looks To Cut Some Of Its Generous Tax Breaks For EVs
  • 5 days China Set To Continue Crude Oil Buying Spree, IEA Says
  • 5 days India Needs Help To Boost Oil Production
  • 5 days Shell Buys One Of Europe’s Largest EV Charging Networks
  • 5 days Oil Throwback: BP Is Bringing Back The Amoco Brand
  • 5 days Libyan Oil Output Covers 25% Of 2017 Budget Needs
  • 5 days District Judge Rules Dakota Access Can Continue Operating
  • 6 days Surprise Oil Inventory Build Shocks Markets
  • 6 days France’s Biggest Listed Bank To Stop Funding Shale, Oil Sands Projects
  • 6 days Syria’s Kurds Aim To Control Oil-Rich Areas
  • 6 days Chinese Teapots Create $5B JV To Compete With State Firms
  • 6 days Oil M&A Deals Set To Rise
  • 6 days South Sudan Tightens Oil Industry Security
  • 7 days Over 1 Million Bpd Remain Offline In Gulf Of Mexico
  • 7 days Turkmenistan To Spend $93-Billion On Oil And Gas Sector
  • 7 days Indian Hydrocarbon Projects Get $300 Billion Boost Over 10 Years
  • 7 days Record U.S. Crude Exports Squeeze North Sea Oil
  • 7 days Iraq Aims To Reopen Kirkuk-Turkey Oil Pipeline Bypassing Kurdistan
  • 7 days Supply Crunch To Lead To Oil Price Spike By 2020s, Expert Says
  • 7 days Saudi Arabia Ups November Oil Exports To 7-Million Bpd
  • 7 days Niger Delta State Looks To Break Free From Oil
  • 8 days Brazilian Conglomerate To Expand Into Renewables
Alt Text

This Key Data Points At Strong U.S. Oil Demand

U.S. Gasoline prices haven’t risen…

Alt Text

3 Stocks To Play Today’s Hottest Market

Big automakers have jumped on…

Alt Text

The New Challenger To Lithium Batteries

The lithium-ion battery is head…

Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

Ford Looks at Increasing the Quantity of Ethanol in Fuel

A team of researchers from Ford Motor Company are asserting in a paper published in the journal Fuel that “substantial societal benefits” would arrive for consumers by using higher volume blends of ethanol to leverage the alcohol’s inherent high octane rating to produce ethanol-gasoline blends with higher octane numbers.

Octane numbers measure in scale the ability of a fuel to resist “knock” an ignition event resulting from premature fuel burning in spark-ignited engines.  The early ignition drives the piston back down the cylinder the wrong direction, which can cause engine damage when the “knock” is severe or prolonged.

Higher octane ratings in fuel blends would enable greater thermal efficiency in future engines through higher compression ratios and/or more aggressive turbocharging and downsizing of current engines on the road today through more aggressive spark timing under some driving conditions.

Ethanol's Impact on RON Octane Ratings in Gasoline.
Ethanol's Impact on RON Octane Ratings in Gasoline.

Ethanol and methanol offer higher research octane numbers (RON) and motor octane numbers (MON) when compared to gasoline. The alcohols also have a greater latent heat of vaporisation than gasoline, which contributes to their higher RON values and provides additional charge cooling in direct-injection (DI) engines.  That means when the alcohols are sprayed into the engine’s induction air the charge of air is cooled more by the evaporation of the alcohol.

The two alcohols are not equal to gasoline.  Detractors focus on the lower energy density than gasoline, potentially higher or lower vapour pressures, altered distillation properties, and potential for water-induced phase separation.  These are all valid points – easily compensated for by proper engineering.

Today the situation is that ethanol is blended into a gasoline blendstocks formulated with a lower octane rating such that the net octane rating of the resulting final blend for sale is unchanged from historical levels.

Ford is making the case, with a hard scientific, peer reviewed, repeatable study what racing folks, hot rodders, engineers, and smart consumers with high compression engines have known for years.

The high octane rating of ethanol could be used in a mid-level ethanol blend to increase the minimum octane number (Research Octane Number, RON) of regular-grade gasoline.

Ford suggests that the societal benefit comes from automakers having an opportunity to improve their engines to a higher compression ratio.  The compression ratio is a comparison of the volume of the open cylinder to the cylinder volume when the piston has squeezed the cylinder to the smallest volume.  The same amount of fuel and air squeezed into a smaller space sets up a more energetic fuel burn that equals more mechanical energy out and less heat lost.

The Ford team used their already developed linear molar octane blending model to quantify RON potential from ethanol and blendstock.  From the results the team estimated that an increase of 4-7 points in RON are possible by blending in an additional 10–20% by volume of ethanol above the 10% already present.

Here’s the opportunity Ford sees, keeping the blendstock RON at 88 (which provides E10 with a 92.5 RON), the estimated RON would be increased to 94.3 for E15 to as much as 98.6 for E30. The team further suggests RON increases may be achievable assuming changes to the blendstock RON and/or hydrocarbon composition.  An increase in blendstock RON from 88 to 92 would increase the RON of E10 from 92.5 to 95.6, and would provide higher RON with additional ethanol content (e.g., RON of 97.1 for E15 to 100.6 for E30).  This is high performance territory.

From the scenarios considered in the paper, the team estimated compression ratio increases to be on the order of 1–3 compression ration units for port fuel injection engines as well as for direct injection engines in which the greater evaporative cooling of ethanol can be fully utilized.

Ford is making a case that has been obvious to many for decades.  That has not stopped the detractors and the ill-informed followers from thinking up an assortment of ways to mislead consumers, the media and policy makers.  The facts the detractors have can prove up with low compression engine builds, poor maintenance, and skewing results.  There is also a strong motive.  The oil industry isn’t thrilled to lose 10% of the gasoline market to a competitor.

For everyone else, a higher compression ratio would be a good thing.  More efficiency, less fuel used and for the environmental types, less air would be cycled through engines.

What is, and as Ford points outs could be, the important issue is keeping the gasoline supply for sale with octane ratings high enough and priced so that higher levels of compression can be engineered into production vehicles at mass scale.

The point not being made was a significant point a couple decades ago when unleaded gasoline became the rule – lowering compression ratios.  It’s a waste of engineering, materials and air to mandate low octane ratings when the science and experience have proven otherwise for about one hundred years.

Perhaps Ford will be marking a turning point, getting the fuel market quality high enough to put efficiency with simple economy back into the automobile market.  It’s certainly been a long enough wait so far.

By. Brian Westenhaus

Source: Ford Makes a Case for Ethanol and Methanol Blends

Back to homepage

Leave a comment
  • Daniel Kormanik on April 10 2012 said:
    What about the very poor lubricating ability of ethanol? And the fact that without good lubrication you will not achieve the great engine life we get today. And while hot rodders and racers know about the higher octane rating, ask them just how long their engines last? Ethanol is useless as an effective large sacle substitute but LNG is a winner
    with a 25% lower cost basis, same BTU equivalent as medium grade gasoline, and produces some 40% less polution. So enough of the talk already. Note: just converting some 20% of cars and large trucks to LNG would take the demand factor away from gasoline and lower prices significantly. And ramping up natural gas domestic production includin exporting natural gas
    would go a long way to provide jobs for some one million currently unemployed. Thus grow the economy.
    All without pushing up food prices. The Ford researchers while smart are economically ignorant.
    I guess I will not be buying stock in Ford.
  • Melvyn Tisdale on April 11 2012 said:
    In an overcrowded and underfed world, surely the last thing we should be considering is using a foodstock to produce fuel for motor cars.
  • redwhiteandblue2 on April 11 2012 said:
    Great peer reviewed research here from Ford for those who have an open mind. Other good sources of peer reviewed data on ethanol: DOE, USDA (food vs fuel myth) and the National Research Laboratories. Good job here Brian... as for your critics, I guess they prefer to continue to send a Billion dollars a day to all our friends overseas that love us so much.

Leave a comment

Oilprice - The No. 1 Source for Oil & Energy News