• 3 minutes e-car sales collapse
  • 6 minutes America Is Exceptional in Its Political Divide
  • 11 minutes Perovskites, a ‘dirt cheap’ alternative to silicon, just got a lot more efficient
  • 17 hours GREEN NEW DEAL = BLIZZARD OF LIES
  • 8 days The United States produced more crude oil than any nation, at any time.
  • 8 hours Could Someone Give Me Insights on the Future of Renewable Energy?
  • 36 mins How Far Have We Really Gotten With Alternative Energy
Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

Premium Content

New System to Produce Energy from Coal Releases 99% Less CO2

Ohio State University engineers are testing a clean coal technology that harnesses the energy of coal producing heat while capturing 99% of the carbon dioxide produced in the reaction.  The test combustion unit reaction ran 203 continuous hours.

The new form of clean coal technology reached an important milestone with the successful operation of a research-scale combustion system at Ohio State.  The team believes the technology is now ready for testing at a larger scale.

Perhaps coal as a source of energy can survive the CO2 attacks with new technology.

Coal and Iron Bead Samples with Chung and Ayham.
Coal and Iron Bead Samples with Chung and Ayham.
   
Liang-Shih Fan, professor of chemical and biomolecular engineering and director of Ohio State’s Clean Coal Research Laboratory, pioneered the technology called Coal-Direct Chemical Looping (CDCL), which chemically harnesses coal’s energy and efficiently contains the carbon dioxide produced before it can be released into the atmosphere.

Fan explains, “In the simplest sense, combustion is a chemical reaction that consumes oxygen and produces heat. Unfortunately, it also produces carbon dioxide, which is difficult to capture and bad for the environment. So we found a way to release the heat without burning. We carefully control the chemical reaction so that the coal never burns – it is consumed chemically, and the carbon dioxide is entirely contained inside the reactor.”

Related Articles: As Coal Use Continues to Grow, China's 'Blackest Day' is still to Come

Dawei Wang, a research associate and one of the group’s team leaders, described the technology’s potential benefits with, “The commercial-scale CDCL plant could really promote our energy independence. Not only can we use America’s natural resources such as Ohio coal, but we can keep our air clean and spur the economy with jobs.”

While other laboratories around the world are trying to develop similar technology to directly convert coal to electricity, Fan’s lab is unique in the way it processes the fossil fuel.  The Ohio State group typically studies coal in the two forms that are already commonly available to the power industry: crushed coal “feedstock,” and coal-derived syngas.

The syngas product has been successfully studied in a second sub-pilot research-scale unit in a similar process called Syngas Chemical Looping (SCL). Both units are located in a building on Ohio State’s Columbus campus, and each is contained in a 25-foot-high insulated metal cylinder that resembles a very tall home water heater tank.

Doctoral student Elena Chung pointed out the experiment could have continued running beyond the 200+ hour elapsed test time, “We voluntarily chose to stop the unit. We actually could have run longer, but honestly, it was a mutual decision by Dr. Fan and the students. It was a long and tiring week where we all shared shifts.”  No other lab has continuously operated a coal-direct chemical looping unit as long as the Ohio State lab.

Fan agreed that the nine-day experiment was a success, “In the two years we’ve been running the sub-pilot plants, our CDCL and SCL units have achieved a combined 830 operating hours, which clearly demonstrates the reliability and operability of our design.”

At any one time, the units each produce about 25 thermal kilowatts thermal energy, which in a full-scale power plant would be used to heat water and turn the steam-powered turbines that create electricity.

The researchers are about to take their technology to the next level: a larger-scale pilot plant is under construction at the U.S. Department of Energy’s National Carbon Capture Center in Wilsonville, AL. Set to begin operations in late 2013, that plant will produce 250 thermal kilowatts using syngas.

Related Articles: Sell US Coal to China and Watch Carbon Emissions Fall

The key to the technology is the use of tiny metal beads to carry oxygen to the fuel to spur the chemical reaction. For CDCL, the fuel is coal that’s been ground into a powder, and the metal beads are made of iron oxide composites. The coal particles are about 100 micrometers across – about the diameter of a human hair – and the iron beads are larger, about 1.5-2 millimeters across. Chung likened the two different sizes to talcum powder and ice cream condiment sprinkles.

The coal and iron oxide are heated to high temperatures, where the materials react with each other. Carbon from the coal binds with the oxygen from the iron oxide and creates carbon dioxide, which rises into a chamber where it is captured. Hot iron and coal ash are left behind. Because the iron beads are so much bigger than the coal ash, they are easily separated out of the ash, and delivered to a chamber where the heat energy would normally be harnessed for electricity. Then the coal ash is removed from the system.

The carbon dioxide is separated and can be recycled or sequestered for storage. The iron beads are exposed to air inside the reactor, so that they become re-oxidized to be used again. The beads can be re-used almost indefinitely, or recycled.

The process captures nearly all the carbon dioxide exceeding the goals that the Department of Energy has set for developing clean energy. Goals have it that new technologies using fossil fuels should not raise the cost of electricity more than 35 percent, while still capturing more than 90 percent of the resulting carbon dioxide. Based on the current tests with the research-scale plants, Fan and his team believe that they can meet or exceed that requirement.

ADVERTISEMENT

It’s a bit alarming to see that 35% increase in cost allowed, but there isn’t any hint of a huge problem with the information out now.  Of considerable interest is major coal industry firms Babcock & Wilcox Power Generation Group, Inc.; CONSOL Energy, Inc.; and Clear Skies Consulting, LLC invested with the DOE in backing the research.  You can be sure that the coal industry isn’t going to give up their shot at providing energy without every possible effort being made to stay in the business and cut costs.

At 99% carbon capture the process would go far in keeping coal in the energy provisioning business.  It nearly closes the door on complaints other than the particle effluent, which from the team’s description wouldn’t be an effluent.

Coal is a big energy provider in electrical production.  The supplies are abundant, infrastructure is in place, and the generation sets installed.  All that’s needed is getting coal’s energy out without the pollution.

Lets hope for our power bills sake, Ohio State has it nailed.

By. Brian Westenhaus

Source: Energy From Coal Without the Burning


Download The Free Oilprice App Today

Back to homepage





Leave a comment
  • Musole on March 09 2013 said:
    99% less CO2. That's certainly impressive. The question is how to obtain high temperature for the reaction? cost?

    CDBH technology actually traps 100% of CO2 produced, and I predict, it is cheaper and requires no modification to current infrastructures.

Leave a comment




EXXON Mobil -0.35
Open57.81 Trading Vol.6.96M Previous Vol.241.7B
BUY 57.15
Sell 57.00
Oilprice - The No. 1 Source for Oil & Energy News