• 25 mins DOE Seeks To Boost Usage Of Carbon Capture Tech
  • 1 hour Taxpayers Likely To Pick Up The Growing Tab For DAPL Protests
  • 4 hours WTI At 7-Month High On Supply Optimism, Kurdistan Referendum
  • 10 hours Permian Still Holds 60-70 Billion Barrels Of Recoverable Oil
  • 15 hours Petrobras Creditors Agree To $6.22 Billion Debt Swap
  • 19 hours Cracks Emerge In OPEC-Russia Oil Output Cut Pact
  • 23 hours Iran Calls On OPEC To Sway Libya, Nigeria To Join Cut
  • 1 day Chevron To Invest $4B In Permian Production
  • 1 day U.S.-Backed Forces Retake Syrian Conoco Gas Plant From ISIS
  • 1 day Iraq Says Shell May Not Quit Majnoon Oilfield
  • 4 days Nigerian Oil Output Below 1.8 Million BPD Quota
  • 4 days Colorado Landfills Contain Radioactive Substances From Oil Sector
  • 4 days Phillips 66 Partners To Buy Phillips 66 Assets In $2.4B Deal
  • 4 days Japan Court Slams Tepco With Fukushima Damages Bill
  • 4 days Oil Spills From Pipeline After Syria Army Retakes Oil Field From ISIS
  • 4 days Total Joins Chevron In Gulf Of Mexico Development
  • 4 days Goldman Chief Urges Riyadh To Get Vision 2030 Going
  • 4 days OPEC Talks End Without Recommendation On Output Cut Extension
  • 4 days Jamaican Refinery Expansion Stalls Due To Venezuela’s Financial Woes
  • 5 days India In Talks to Acquire 20 Percent Of UAE Oilfield
  • 5 days The Real Cause Of Peak Gasoline Demand
  • 5 days Hundreds Of Vertical Oil Wells Damaged By Horizontal Fracking
  • 5 days Oil Exempt In Fresh Sanctions On North Korea
  • 5 days Sudan, South Sudan Sign Deal To Boost Oil Output
  • 5 days Peruvian Villagers Shut Down 50 Oil Wells In Protest
  • 5 days Bay Area Sues Big Oil For Billions
  • 5 days Lukoil Looks To Sell Italian Refinery As Crimea Sanctions Intensify
  • 6 days Kurdistan’s Biggest Source Of Oil Funds
  • 6 days Oil Prices On Track For Largest Q3 Gain Since 2004
  • 6 days Reliance Plans To Boost Capacity Of World’s Biggest Oil Refinery
  • 6 days Saudi Aramco May Unveil Financials In Early 2018
  • 6 days Has The EIA Been Overestimating Oil Production?
  • 6 days Taiwan Cuts Off Fossil Fuels To North Korea
  • 6 days Clash In Oil-Rich South Sudan Region Kills At Least 25
  • 6 days Lebanon Passes Oil Taxation Law Ahead Of First Licensing Auction
  • 7 days India’s Oil Majors To Lift Borrowing To Cover Dividends, Capex
  • 7 days Gulf Keystone Plans Further Oil Output Increase In Kurdistan
  • 7 days Venezuela’s Crisis Deepens As Hurricane Approaches
  • 7 days Tension Rises In Oil-Rich Kurdistan
  • 7 days Petrobras To Issue $2B New Bonds, Exchange Shorter-Term Debt
Alt Text

Ambitious Solar Project Takes Root In Tunisia

This small northern-African nation could…

Alt Text

Solar Costs Are Dropping Much Faster Than Expected

The U.S. Department of Energy…

Alt Text

Unusual Ruling Could Impact Cheap Solar Panel Imports

The U.S. International Trade Commission…

Panasonic's New Process for Artificial Photosynthesis Looks Promising

Tuesday the web started noticing that Panasonic has developed an artificial photosynthesis system, which converts carbon dioxide (CO2) to organic materials.  A quick review of the web site commentary revealed how far the assumptions got before Panasonic got the press release open and out in English on the corporate site in Japan.

What Panasonic has developed is three major improvements in one process.

The first part is Panasonic has taken CO2 directly to formic acid, a valuable precursor to numerous petroleum like compounds including fuels.  The next phase is the efficiency approximates that of many plants, 0.2%.  Obviously, paving over areas that need shaded offers a much lower cost route to liquid fuels than soil, weather, plants, cultivation, and processing, etc.

The third part is the new technology is a simple and tough structure that could well stand up to light collection and focusing to high intensity.

That’s one very big jump indeed. No living molecules involved.

Panasonic's Artificial Photosynthesis System
Panasonic’s Artificial Photosynthesis Schematic and Experiment Photo. More details in the text below.

Panasonic’s artificial photosynthesis system converting carbon dioxide to organic materials by illuminating with sunlight is now a top world’s top efficiency of 0.2%. The efficiency level is on a comparable level with the plants commonly used for biomass energy.

The key to the system is the application of a nitride semiconductor, which makes the system simple and efficient. This development will be a foundation for building a system for capturing and converting wasted carbon dioxide from incinerators, power plants or industrial activities.

Previously, approaches to systems have had complex structures such as organic complexes or plural photo-electrodes, which makes it difficult to improve their efficiency in response to the light. Panasonic’s artificial photosynthesis system has a simple structure with highly efficient CO2 conversion, which can utilize direct sunlight or focused light.

Panasonic says they first found that a nitride semiconductor has the capability to excite the electrons with enough high energy for the CO2 reduction reaction. Nitride semiconductors have attracted attention for their potential applications in highly efficient optical and power devices for energy saving. However, its potential was revealed to extend beyond solid devices; more specifically, it can be used as a photo-electrode for CO2 reduction. Making a structure for a device through the thin film process for semiconductors, has highly improved the performance as a photo- electrode.

The CO2 reduction takes place on a metal catalyst at the opposite side of nitride semiconductor photo-electrode. See Fig. 1.  The metal catalyst plays an important role in selecting and accelerating the reaction. Here, it is noted that the system is comprised of only inorganic materials, which can reduce the CO2 with low energy loss. Because of this, the amount of reaction products is exactly proportional to the light power. This is one of the merits in such an all-inorganic system, as some working conventional systems cannot follow a general powering up of the light power because of their internal or external rate-limiting processes in the complex structures.

The nitride semiconductor and a metal catalyst system generates mainly formic acid from the CO2 and water with light at a world’s top efficiency of 0.2%. The efficiency is comparable to the level of real plants used in the biomass energy source.  Formic acid is an important chemical in industry, most commonly known for dye and fragrances.

The reaction rate is completely proportional to the light power due to the low energy loss with a simple structure; in other words, the system can respond to focused light. This will make it possible to design a simple and compact system for capturing and converting waste carbon dioxide from incinerators and electric generation plants.

That’s a bit repetitive, but follows the intent of the translated press release on the Panasonic site.

The schematic is quite tantalizing and revealing.  Assuming the whole of the inputs and outputs are disclosed the process is consuming all desirable inputs and expelling no undesirable ones.  There is sure to be more to all of this, but for now the folks at Panasonic have offered up a great leap of progress for using solar energy in a practical way.

The patent work is underway.  Panasonic personnel presented the technology in part at 19th International Conference on the Conversion and Storage of Solar Energy held on Pasadena, United States on July 30, 2012.

OK.  Congratulations, good work, keep it coming.

By. Brian Westenhaus

Source: A Big Jump Ahead For Artificial Photosynthesis




Back to homepage


Leave a comment

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News