follow us like us subscribe contact us
Adbar

Costs Fall with First Ever 100% Carbon Solar Cell

By Futurity | Sun, 04 November 2012 00:00 | 3

Researchers have developed a solar cell made entirely of carbon, an inexpensive substitute for the pricey materials currently used in conventional solar panels.

“Carbon has the potential to deliver high performance at a low cost,” says study senior author Zhenan Bao, a professor of chemical engineering at Stanford University.  “To the best of our knowledge, this is the first demonstration of a working solar cell that has all of the components made of carbon. This study builds on previous work done in our lab.”

Unlike rigid silicon solar panels that adorn many rooftops, the thin film prototype is made of carbon materials that can be coated from solution.

Carbon Solar Cell
The all-carbon solar cell consists of a photoactive layer, which absorbs sunlight, sandwiched between two electrodes. (Credit: Mark Shwartz/Stanford)

 “Perhaps in the future we can look at alternative markets where flexible carbon solar cells are coated on the surface of buildings, on windows, or on cars to generate electricity,” Bao says.

Related Article: Solar Roadways: Powering the World of Tomorrow

The coating technique also has the potential to reduce manufacturing costs, says graduate student Michael Vosgueritchian, co-lead author of the study with postdoctoral researcher Marc Ramuz.

“Processing silicon-based solar cells requires a lot of steps,” Vosgueritchian explains. “But our entire device can be built using simple coating methods that don’t require expensive tools and machines.”

Carbon nanomaterials

The experimental solar cell consists of a photoactive layer, which absorbs sunlight, sandwiched between two electrodes.  In a typical thin film solar cell, the electrodes are made of conductive metals and indium tin oxide (ITO).

“Materials like indium are scarce and becoming more expensive as the demand for solar cells, touchscreen panels, and other electronic devices grows,” Bao says.  “Carbon, on the other hand, is low cost and Earth-abundant.”

For the study, published in ACS Nano, Bao and her colleagues replaced the silver and ITO used in conventional electrodes with graphene—sheets of carbon that are one atom thick—and single-walled carbon nanotubes that are 10,000 times narrower than a human hair.

“Carbon nanotubes have extraordinary electrical conductivity and light-absorption properties,” Bao says.

For the active layer, the scientists used material made of carbon nanotubes and “buckyballs”—soccer ball-shaped carbon molecules just one nanometer in diameter.  The research team recently filed a patent for the entire device.

“Every component in our solar cell, from top to bottom, is made of carbon materials,” Vosgueritchian says. “Other groups have reported making all-carbon solar cells, but they were referring to just the active layer in the middle, not the electrodes.”

Related Article: The U.S.-EU Green Energy Divide

One drawback of the all-carbon prototype is that it primarily absorbs near-infrared wavelengths of light, contributing to a laboratory efficiency of less than 1 percent—much lower than commercially available solar cells.  “We clearly have a long way to go on efficiency,” Bao says.  “But with better materials and better processing techniques, we expect that the efficiency will go up quite dramatically.”

Improving efficiency

The Stanford team is looking at a variety of ways to improve efficiency. “Roughness can short-circuit the device and make it hard to collect the current,” Bao says. “We have to figure out how to make each layer very smooth by stacking the nanomaterials really well.”

The researchers are also experimenting with carbon nanomaterials that can absorb more light in a broader range of wavelengths, including the visible spectrum. “Materials made of carbon are very robust,” Bao says. “They remain stable in air temperatures of nearly 1,100 degrees Fahrenheit.”

The ability of carbon solar cells to out-perform conventional devices under extreme conditions could overcome the need for greater efficiency. “We believe that all-carbon solar cells could be used in extreme environments, such as at high temperatures or at high physical stress,” Vosgueritchian says. “But obviously we want the highest efficiency possible and are working on ways to improve our device.”

“Photovoltaics will definitely be a very important source of power that we will tap into in the future,” Bao says. “We have a lot of available sunlight. We’ve got to figure out some way to use this natural resource that is given to us.”

By.  Mark Shwartz-Stanford

Other authors of the study are Peng Wei of Stanford and Chenggong Wang and Yongli Gao of the University of Rochester. The research was funded by the Global Climate and Energy Project at Stanford and the Air Force Office for Scientific Research.

Leave a comment

  • bmz on November 05 2012 said:
    Sorry, but we have been hearing about the cheap thin film revolution in solar cells for the last 30 years.
  • NZKIWI on November 06 2012 said:
    @ bmz

    True, but that is no reason not to keep encouraging the researchers. Man dreamed of powered flight long before it became a reality and until that was finally cheived, experimenters were treated with disdain and ridicule.

    The holy grail of cheap renewable power will be a monumental advance to our civilisation, and no, I'm not a left-wing nutcase.

    Keep at it, guys, and the very best of luck to you.
  • Mel Tisdale on November 06 2012 said:
    The major problem with solar cells is that they switch off when the sun goes down, or behind a cloud. Without some dramatic breakthrough in energy storage, they are going to need some form of back up. The more rooftops have solar panels, the more back up wil be required.

    The most sensible back-up would obviously be thorium fueled molten salt nuclear reactors, which have many advantages, not least of which is that they are inherently safe. But, of course, the Green brigade see the word 'nuclear' and wet their knickers in anger at its very mention in polite society.

    So that leaves us with fossil fuel power generation with its associated carbon emissions and, of course, radioactive emissions from the radon released from the coal they burn. Something the greens fail to mention for some reason.

    And all the while the Chinese are quietly developing LFTR power generation and will one day come knocking on our collective 'Western' door to sell us what we have failed to develop despite the fifty year lead we once had in the process. Oh hum, SNAFU!

Leave a comment