• 11 hours Oil Prices Rise After U.S. API Reports Strong Crude Inventory Draw
  • 12 hours Oil Gains Spur Growth In Canada’s Oil Cities
  • 12 hours China To Take 5% Of Rosneft’s Output In New Deal
  • 13 hours UAE Oil Giant Seeks Partnership For Possible IPO
  • 14 hours Planting Trees Could Cut Emissions As Much As Quitting Oil
  • 14 hours VW Fails To Secure Critical Commodity For EVs
  • 15 hours Enbridge Pipeline Expansion Finally Approved
  • 16 hours Iraqi Forces Seize Control Of North Oil Co Fields In Kirkuk
  • 17 hours OPEC Oil Deal Compliance Falls To 86%
  • 1 day U.S. Oil Production To Increase in November As Rig Count Falls
  • 1 day Gazprom Neft Unhappy With OPEC-Russia Production Cut Deal
  • 2 days Disputed Venezuelan Vote Could Lead To More Sanctions, Clashes
  • 2 days EU Urges U.S. Congress To Protect Iran Nuclear Deal
  • 2 days Oil Rig Explosion In Louisiana Leaves 7 Injured, 1 Still Missing
  • 2 days Aramco Says No Plans To Shelve IPO
  • 4 days Trump Passes Iran Nuclear Deal Back to Congress
  • 4 days Texas Shutters More Coal-Fired Plants
  • 5 days Oil Trading Firm Expects Unprecedented U.S. Crude Exports
  • 5 days UK’s FCA Met With Aramco Prior To Proposing Listing Rule Change
  • 5 days Chevron Quits Australian Deepwater Oil Exploration
  • 5 days Europe Braces For End Of Iran Nuclear Deal
  • 5 days Renewable Energy Startup Powering Native American Protest Camp
  • 5 days Husky Energy Set To Restart Pipeline
  • 5 days Russia, Morocco Sign String Of Energy And Military Deals
  • 5 days Norway Looks To Cut Some Of Its Generous Tax Breaks For EVs
  • 6 days China Set To Continue Crude Oil Buying Spree, IEA Says
  • 6 days India Needs Help To Boost Oil Production
  • 6 days Shell Buys One Of Europe’s Largest EV Charging Networks
  • 6 days Oil Throwback: BP Is Bringing Back The Amoco Brand
  • 6 days Libyan Oil Output Covers 25% Of 2017 Budget Needs
  • 6 days District Judge Rules Dakota Access Can Continue Operating
  • 6 days Surprise Oil Inventory Build Shocks Markets
  • 7 days France’s Biggest Listed Bank To Stop Funding Shale, Oil Sands Projects
  • 7 days Syria’s Kurds Aim To Control Oil-Rich Areas
  • 7 days Chinese Teapots Create $5B JV To Compete With State Firms
  • 7 days Oil M&A Deals Set To Rise
  • 7 days South Sudan Tightens Oil Industry Security
  • 7 days Over 1 Million Bpd Remain Offline In Gulf Of Mexico
  • 7 days Turkmenistan To Spend $93-Billion On Oil And Gas Sector
  • 7 days Indian Hydrocarbon Projects Get $300 Billion Boost Over 10 Years
Alt Text

Solar Costs Are Dropping Much Faster Than Expected

The U.S. Department of Energy…

Alt Text

Unusual Ruling Could Impact Cheap Solar Panel Imports

The U.S. International Trade Commission…

Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

Captured CO2 to be Used as a New Fuel Source Using Solar Power

George Washington University’s Dr. Stuart Licht and colleagues have published the first experimental evidence of their new solar thermal electrochemical photovoltaic (STEP) process, which combines electrical and chemical pathways to convert CO2 to carbon or to carbon monoxide for subsequent use in synthesizing a range of industrially relevant products including hydrocarbon fuels.

According to the research team the STEP process is fundamentally capable of converting more solar energy than either photovoltaic or solar thermal processes working alone.
The STEP process uses a high temperature solar powered electrolysis cell to capture CO2 in a single step. Solar thermal energy decreases the energy required for the endothermic conversion of carbon dioxide and kinetically facilitates electrochemical reduction.  Meanwhile visible light solar energy generates the electric charge to drive the electrolysis.

STEP Process
STEP Process Block Diagram.

For the experiment, the team used a concentrator solar cell to generate 2.7 volts at a maximum power point, with solar to electrical energy efficiencies of 35% under 50 suns illumination, and 37% under 500 suns illumination. The 2.7 V is used to drive two molten electrolysis cells in series at 750 °C and three in series at 950 °C.
At 950 °C running at 0.9 V, the electrolysis cells generate carbon monoxide at 1.3-1.5 amps, and at 750 °C at 1.35 V generate solid carbon formation at similar amps.

Solid Carbon
Step Process Forms Solid Carbon.

The George Washington team also was thoughtful enough that the supporting information published along with the paper details the methodology and the materials used in the experiment.

Of great note and acclaim the research team addresses the questions of material resources, saying, “are sufficient to expand to process to substantially impact (decrease) atmospheric levels of carbon dioxide.”  This perspective is rarely observed in research papers and the inclusion by the George Washington team deserves notation and gratitude.  The information gives the research depth of understanding and better chances of improvement.

The key materials issues raised: “A related resource question is whether there is sufficient lithium carbonate, as an electrolyte of choice for the STEP carbon capture process, to decrease atmospheric levels of carbon dioxide. 700 km2 of CPV plant will generate 5×10^13 Amps of electrolysis current, and require ~2 million metric tonnes of lithium carbonate, as calculated from a 2 kg/l density of lithium carbonate, and assuming that improved, rather than flat, morphology electrodes will operate at 5 A/cm2 (1,000 km2) in a cell of 1 mm thick. Thicker, or lower current density, cells will require proportionally more lithium carbonate. Fifty, rather than ten, years to return the atmosphere to pre-industrial carbon dioxide levels will require proportionally less lithium carbonate. These values are viable within the current production of lithium carbonate. Lithium carbonate availability as a global resource has been under recent scrutiny to meet the growing lithium battery market. It has been estimated that the current global annual production of 0.13 million tonnes of LCE (lithium carbonate equivalents) will increase to 0.24 million tonnes by 2015.SI-1 Potassium carbonate is substantially more available, but as noted in the main portion of the paper can require higher carbon capture electrolysis potentials than lithium carbonate.”

Effectively, should the process be brought on line, 700 square kilometers (270 square miles) of this system would extract the “excess atmospheric CO2” within ten years.  If those numbers were accurate an area less than 17 x 17 miles would mop up the “excess” carbon dioxide in the atmosphere.  This is a stretch for reasoning, but the numbers work.

Also there is a platinum matter to consider if the design went to solid carbon capture, but the platinum would be recycled endlessly.

The team is also looking at STEP to generate synthetic jet fuel and synthetic diesel.  That would get some of the carbon cycling.

The team is working at refinement and scaling of STEP for carbon capture.

Without needing a huge source of production energy by using solar the main problem – the energy needed to drive the heating and electrolysis could pretty much be resolved.

There are gaps in the explanation available in the supporting information.  Of primary concern is the concentration level of the CO2 entering the process.  It’s not clear how pure the CO2 would have to be.  Just running air through is one thing, a concentration step to unspecified purity is quite another.

Yet the George Washington team is on to a system with great potential.  The external energy production not needed is very significant; the potential for fuel production or sequestration, depending on one’s political views cannot be overlooked.

Solar powered CO2 to new fuel sources just got much closer.

By. Brian Westenhaus of NewEnergyandFuel.com

Source: Catching CO² to Make Some Useful Fuel




Back to homepage


Leave a comment
  • Anonymous on September 22 2010 said:
    that is great to convert carbon dioxide into a useful product

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News