WTI Crude


Brent Crude


Natural Gas




Heating Oil


Rotate device for more commodity prices

Alt Text

Besides Shale, Argentina Doubles Down On Renewables

Argentina’s first big renewable energy…

Alt Text

Clean Energy Gets A Boost With California Regulations

New regulations to boost accuracy…

Scientists Produce Cheap Hydrogen from Rust and Sunlight

Researchers at the Ecole Polytechnique Fédérale de Lausanne have managed to accurately characterize the iron oxide nanostructures to be used in producing hydrogen at the “lowest known possible cost”.

The news could make is possible to achieve the idea that water and some nano-structured iron oxide is all it takes to produce bubbles of solar hydrogen.  As regular readers know, the quest for the production of renewable and clean energy using photoelectrochemical cells (PECs) constitutes a sort of a Holy Grail for fuel.  PECs are devices able of splitting water molecules into hydrogen and oxygen in a single operation using only solar radiation.

The French are feeling pretty good.  Michael Grätzel, Director of the Laboratory of Photonics and Interfaces (LPI) at EPFL and inventor of dye-sensitized photoelectrochemical cells said, “As a matter of fact, we’ve already discovered this precious ‘chalice’. Today we have just reached an important milestone on the path that will lead us forward to profitable industrial applications.”

The peer-reviewed paper appeared this week in Nature Materials.  Working with Grätzel’s group is Avner Rotschild from Technion of Israel.  The standout point of the paper is they have managed to accurately characterize the iron oxide nanostructures to be used in a water splitting operation.

Related article: IBM Develops Solar System to Concentrate the Sun’s Rays 2000 Times

Iron Oxide Nanostructures for Hydrogen Production.
Iron Oxide Nanostructures for Hydrogen Production.

Scott C. Warren, first author of the article said, “The whole point of our approach is to use an exceptionally abundant, stable and cheap material: rust.”

The press release isn’t especially complete, but hints a major point of the groups progress may have been Kevin Sivula, one of the collaborators at the LPI laboratory, presenting a prototype electrode based on the same principle last year. Its efficiency was such that gas bubbles emerged as soon as it was under a light stimulus.

That lit off realizing the potential of such cheap electrodes was demonstrated.  Still, there is still room for improvement.

The researchers were able to precisely characterize the movement of the electrons through the cauliflower-looking nanostructures forming the iron oxide particles, laid on electrodes during the manufacturing process by using transmission electron microscopy (TEM) techniques.

Grätzel explains, “These measures have helped us understand the reason why we get performance differences depending on the electrodes manufacturing process.”

Related article: New Engineless Planes could Fly on Ionic Winds

Then comparing several electrodes, whose manufacturing method is now mastered, the scientists were able to identify the “champion” structure. A 10×10 cm prototype has been produced and its effectiveness is in line with expectations. The next step will be the development of the industrial process to large-scale manufacturing. A European funding and the Swiss federal government could provide support for this last part.

The long-term goal is to produce hydrogen in an environmentally friendly and especially, a competitive way.

Grätzel said, “Current methods, in which a conventional photovoltaic cell is coupled to an electrolyzer for producing hydrogen, costs €15 per kilo at their cheapest. We’re aiming at a €5 charge per kilo.”

That’s still rather pricey for the North American market.  And somewhat confusing as the powering energy would be free sunlight and the iron oxide is ridiculously cheap.  Two point two pounds of hydrogen for $6 doesn’t look like a great deal.

But the research is young, and these are academic researchers after all.  How accurate their estimates are at this stage is anyone’s guess.  Best would be for the team to keep working.  They have the right looking stuff whatever the estimates might be.

By. Brian Westenhaus

Original Source: A New and Good Idea for the Hydrogen Economy

Back to homepage

Leave a comment
  • Ulysse De Willmergen on July 10 2013 said:
    Thank you for this nice article.

    Just a few words, though.Lausanne is in Switzerland, not in France.

    Best regards

    U. De Willmergen, Lausanne

Leave a comment

Oilprice - The No. 1 Source for Oil & Energy News