• 5 hours Oil Prices Rise After U.S. API Reports Strong Crude Inventory Draw
  • 6 hours Oil Gains Spur Growth In Canada’s Oil Cities
  • 7 hours China To Take 5% Of Rosneft’s Output In New Deal
  • 7 hours UAE Oil Giant Seeks Partnership For Possible IPO
  • 8 hours Planting Trees Could Cut Emissions As Much As Quitting Oil
  • 9 hours VW Fails To Secure Critical Commodity For EVs
  • 10 hours Enbridge Pipeline Expansion Finally Approved
  • 11 hours Iraqi Forces Seize Control Of North Oil Co Fields In Kirkuk
  • 12 hours OPEC Oil Deal Compliance Falls To 86%
  • 1 day U.S. Oil Production To Increase in November As Rig Count Falls
  • 1 day Gazprom Neft Unhappy With OPEC-Russia Production Cut Deal
  • 1 day Disputed Venezuelan Vote Could Lead To More Sanctions, Clashes
  • 1 day EU Urges U.S. Congress To Protect Iran Nuclear Deal
  • 1 day Oil Rig Explosion In Louisiana Leaves 7 Injured, 1 Still Missing
  • 1 day Aramco Says No Plans To Shelve IPO
  • 4 days Trump Passes Iran Nuclear Deal Back to Congress
  • 4 days Texas Shutters More Coal-Fired Plants
  • 4 days Oil Trading Firm Expects Unprecedented U.S. Crude Exports
  • 4 days UK’s FCA Met With Aramco Prior To Proposing Listing Rule Change
  • 4 days Chevron Quits Australian Deepwater Oil Exploration
  • 5 days Europe Braces For End Of Iran Nuclear Deal
  • 5 days Renewable Energy Startup Powering Native American Protest Camp
  • 5 days Husky Energy Set To Restart Pipeline
  • 5 days Russia, Morocco Sign String Of Energy And Military Deals
  • 5 days Norway Looks To Cut Some Of Its Generous Tax Breaks For EVs
  • 5 days China Set To Continue Crude Oil Buying Spree, IEA Says
  • 5 days India Needs Help To Boost Oil Production
  • 5 days Shell Buys One Of Europe’s Largest EV Charging Networks
  • 5 days Oil Throwback: BP Is Bringing Back The Amoco Brand
  • 5 days Libyan Oil Output Covers 25% Of 2017 Budget Needs
  • 5 days District Judge Rules Dakota Access Can Continue Operating
  • 6 days Surprise Oil Inventory Build Shocks Markets
  • 6 days France’s Biggest Listed Bank To Stop Funding Shale, Oil Sands Projects
  • 6 days Syria’s Kurds Aim To Control Oil-Rich Areas
  • 6 days Chinese Teapots Create $5B JV To Compete With State Firms
  • 6 days Oil M&A Deals Set To Rise
  • 6 days South Sudan Tightens Oil Industry Security
  • 7 days Over 1 Million Bpd Remain Offline In Gulf Of Mexico
  • 7 days Turkmenistan To Spend $93-Billion On Oil And Gas Sector
  • 7 days Indian Hydrocarbon Projects Get $300 Billion Boost Over 10 Years
Alt Text

Rising Costs Slow The Growth Of Nuclear Power

High costs and public fears…

Alt Text

New Tech Is Transforming Japan’s Energy Sector

The tech that built bitcoin…

Alt Text

This OPEC Strategy Could Boost Uranium Prices Next Year

Kazakhstan, the world’s largest uranium…

Using Bacteria to Increase Efficiency of Biofuel Production

A new way of making biofuel produces 20 times more energy than existing methods by adding bacteria that turn by products into electricity.

The results of a new study, published in the current issue of Environmental Science and Technology, showcase a novel way to use microbes to produce biofuel and hydrogen, all while consuming agricultural wastes.

Gemma Reguera, a Michigan State University microbiologist, has developed bioelectrochemical systems known as microbial electrolysis cells, or MECs, using bacteria to breakdown and ferment agricultural waste into ethanol.

Reguera’s platform is unique because it employs a second bacterium, which, when added to the mix, removes all the waste fermentation by-products or non-ethanol materials while generating electricity.

Similar microbial fuel cells have been investigated before. However, maximum energy recoveries from corn stover, a common feedstock for biofuels, hover around 3.5 percent. Reguera’s platform, despite the energy invested in chemical pretreatment of the corn stover, averaged 35 to 40 percent energy recovery just from the fermentation process, says Reguera, an AgBioResearch scientist who co-authored the paper with Allison Spears, a Michigan State graduate student.

“This is because the fermentative bacterium was carefully selected to degrade and ferment agricultural wastes into ethanol efficiently and to produce by-products that could be metabolized by the electricity-producing bacterium,” Reguera says.

“By removing the waste products of fermentation, the growth and metabolism of the fermentative bacterium also was stimulated. Basically, each step we take is custom-designed to be optimal.”

The second bacterium, Geobacter sulfurreducens, generates electricity. The electricity, however, isn’t harvested as an output. It is used to generate hydrogen in the MEC to increase the energy recovery process even more, Reguera says.

“When the MEC generates hydrogen, it actually doubles the energy recoveries,” she says. “We increased energy recovery to 73 percent. So the potential is definitely there to make this platform attractive for processing agricultural wastes.”

Reguera’s fuel cells use corn stover treated by the ammonia fibre expansion process, an advanced pretreatment technology pioneered at Michigan State. AFEX is an already proven method that was developed by Bruce Dale, professor of chemical engineering and materials science, who is currently working to make AFEX viable on a commercial scale.

In a similar vein, Reguera is continuing to optimize her MECs so they, too, can be scaled up on a commercial basis. Her goal is to develop decentralized systems that can help process agricultural wastes. Decentralized systems could be customized at small to medium scales (scales such as compost bins and small silages, for example) to provide an attractive method to recycle the wastes while generating fuel for farms.

By. Layne Cameron




Back to homepage


Leave a comment
  • Jennifer Green on July 17 2012 said:
    or we could improve our enzymatic solutions
    http://www.renewable-energy-technology.net/geothermal-bioenergy/us-enzyme-tech-boost-biofuel-production

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News