follow us like us subscribe contact us
Loading, please wait

Supply Policies Prevent Hydropower from Fulfilling its Potential

By Futurity | Wed, 26 June 2013 21:39 | 1

“We have a very clear realization that we need to make energy systems more sustainable,” says Seth A. Blumsack, assistant professor of energy policy at Penn State. “We want to reduce the environmental footprint—carbon dioxide and conventional pollutants.”

Americans also expect to have the system continue to work exactly as it is without blackouts and with low cost electricity. While wind and solar power are emission-free once installed, they are also subject to the whims of nature. The wind can suddenly cease to blow and an area can have minimal sunlight for days.

 “Wind is the fastest growing renewable energy source in the US,” says Alisha R. Fernandez, graduate student in energy and mineral engineering.

The US Department of Energy recently examined the feasibility of producing 20 percent of US electricity from wind by 2030.

“Texas is either there or close,” Blumsack says. “During certain periods, as much as 30 percent of their energy is generated by wind.”

But reliance on wind requires that there be some backup technology to fill in when the wind doesn’t blow—and the technology has to be capable of coming online quickly. Two types of electrical generation that fit the bill are natural gas and hydropower, but natural gas isn’t carbon neutral.

Related article: Brazil’s Belo Monte Dam, Bad Idea?

For the study published in Environmental Research Letters, researchers looked at the Kerr Dam in North Carolina. Power produced by the Kerr Dam goes into the PJM segment of the electric grid—Pennsylvania through Virginia on the East Coast, west to Indiana and also includes the Chicago area—but agreements made before establishment of the PJM market mean that the Kerr Dam also supplies other local outlets.

Hydroelectric dams cannot simply release water to meet some electricity demand or hold back water when electricity is in low demand. Plants operate using guide curves that consider not only electric production, but also drinking water needs, irrigation, fish and wildlife requirements, recreation, and minimum levels for droughts.

These guide curves are created by the government agencies regulating the particular dam—in the case of Kerr, the US Army Corps of Engineers—but in other places it could be the US Bureau of Reclamation, the Tennessee Valley Authority, the Colorado River Authority, or other entities.

In practice, the guide curves are currently based on one-week weather forecasts and their parameters take into account the requirements of a large variety of interested parties.

The researchers determined that the Kerr Dam could accommodate the unexpected variations in wind energy, but only if those operating the dam were allowed to meet the guide curve requirements over a two-week rather than one-week period of time.

Related article: Russian Concerns over Central Asia Threaten Kyrgyzstan Hydroelectric Plant

“Changing guide curves is complex, time-consuming, and may even require an act of Congress,” Blumsack says. “Another problem is that two weeks is at the outer margin of weather prediction.”

If hydro plants don’t pledge to sell their electricity to make up for the variability of wind energy, they sell their excess on the spot market. Changing the pricing of electricity so that backing up wind is more lucrative than the spot market would not make these multipurpose hydro facilities more prone to supply backup to wind power.

“Operational conflicts may be significantly reduced if the time length of the guide curve schedule was altered, yet such regulatory changes prove quite challenging given the institutional barriers surrounding water rights in the US,” say the researchers, who also include Patrick M. Reed, professor of civil engineering at Cornell University.

The National Science Foundation supported the research.

By. A'ndrea Elyse Messer

Leave a comment

  • SA Kiteman on June 27 2013 said:
    Currently, hydro provides less than on quarter of the electricity in the US which amounts to less that one quarter of useful energy consumed. And since Hydro in the US is pretty much built out, where is the extra 1500% growth supposed to go in?

    Liquid Fluoride Thorium Recyclers can produce the total energy needed for a US level of consumption by every person on earth from the thorium waste of ONE medium sized rare earth element mine. THERE is your clean, sustainable resource. And you don't have to cover the forests with bird killing, sleep stealing wind mills to do it.

Leave a comment