follow us like us subscribe contact us
Adbar

Unlocking the Secrets of Cellulose to Improve Biofuel Efficiency

By Futurity | Mon, 17 December 2012 23:04 | 0

New research reveals how cells extrude cellulose—findings that could improve biofuel production and help better fight bacteria.

Understanding the production and deposition of cellulose, the primary component of plants’ cell walls and the most common natural polymer on Earth, may lead to new ways to tear it down or create plants with weaker walls.

The findings are of particular interest to the federal Department of Energy, which is seeking ways to break down plant cells more easily to facilitate the production of biofuels.

Similarly, the findings may offer new targets for battling bacteria and preventing the spread of infections. Cellulose is one of the components that bacteria produce to create strong, spongy coatings—called “biofilms”—that allow them to clump together and cling to surfaces. The plaque that forms on teeth, for example, is a biofilm.

“If we can prevent biofilm formation, we would expect to make it easier to get rid of the bacteria—to actually kill it,” says University of Virginia researcher Jochen Zimmer. “And you could also prevent them from adhering to the surgical devices and other tools used in hospitals.”

In a paper published in the online edition of Nature, the researchers map out the 3D architecture of the enzyme complex responsible for cellulose production. The researchers first determined the components necessary to produce and secrete cellulose and then solved the structure of the enzyme complex.

Their study reveals how new cellulose polymers are extruded from a cell through a channel, a bit like a spider spinning a thread of spider silk, and how this process is intimately linked to the formation of cellulose.

Related Article: Algal Biofuel is Currently Unsustainable, but Technology can Change That

Until now, the end result was understood, but the process itself was largely unknown.

The enzyme is unique in that it both produces cellulose polymers (by attaching glucose molecules) and pushes them outside the cell simultaneously; usually the division of labor is different, with production and movement either handled separately or handled by different enzymes.

“By capturing the crystal structure of part of a protein complex that both synthesizes and transfers cellulose out of a bacterium one sugar unit at a time, this work provides a window into the details of a unique cellular mechanism,” says Pamela Marino of the National Institutes of Health’s National Institute of General Medical Sciences, which partly funded the work.

“A similar process is likely at work in the synthesis and secretion of key carbohydrate polymers in other organisms, such as hyaluronan in mammals.”

In building a 3D model of the atomic architecture, the team members were surprised to observe what they had thought almost impossible: They had captured an image of a new cellulose polymer being synthesized and transported from the inside of a cell to the outside.

This was most unexpected, both because the process is transitory and because the submicroscopic imaging required—a combination of X-ray diffraction and advanced math—can work only with an extremely stable and uniform ensemble of proteins.

Zimmer expects the findings to be significant both to biofuel production and the field of medicine, but its impact could reach even farther. He says the team plans to extend its research to look at the biosynthesis of chitin, an essential component of the shells of insects. Preventing the formation of chitin, he says, could make for a very effective form of pest control.

By. Josh Barney

Be the first to comment on this article.

Leave a comment