• 5 hours Conflicting News Spurs Doubt On Aramco IPO
  • 6 hours Exxon Starts Production At New Refinery In Texas
  • 8 hours Iraq Asks BP To Redevelop Kirkuk Oil Fields
  • 1 day Oil Prices Rise After U.S. API Reports Strong Crude Inventory Draw
  • 1 day Oil Gains Spur Growth In Canada’s Oil Cities
  • 1 day China To Take 5% Of Rosneft’s Output In New Deal
  • 1 day UAE Oil Giant Seeks Partnership For Possible IPO
  • 1 day Planting Trees Could Cut Emissions As Much As Quitting Oil
  • 1 day VW Fails To Secure Critical Commodity For EVs
  • 1 day Enbridge Pipeline Expansion Finally Approved
  • 1 day Iraqi Forces Seize Control Of North Oil Co Fields In Kirkuk
  • 1 day OPEC Oil Deal Compliance Falls To 86%
  • 2 days U.S. Oil Production To Increase in November As Rig Count Falls
  • 2 days Gazprom Neft Unhappy With OPEC-Russia Production Cut Deal
  • 2 days Disputed Venezuelan Vote Could Lead To More Sanctions, Clashes
  • 2 days EU Urges U.S. Congress To Protect Iran Nuclear Deal
  • 2 days Oil Rig Explosion In Louisiana Leaves 7 Injured, 1 Still Missing
  • 2 days Aramco Says No Plans To Shelve IPO
  • 5 days Trump Passes Iran Nuclear Deal Back to Congress
  • 5 days Texas Shutters More Coal-Fired Plants
  • 5 days Oil Trading Firm Expects Unprecedented U.S. Crude Exports
  • 5 days UK’s FCA Met With Aramco Prior To Proposing Listing Rule Change
  • 5 days Chevron Quits Australian Deepwater Oil Exploration
  • 6 days Europe Braces For End Of Iran Nuclear Deal
  • 6 days Renewable Energy Startup Powering Native American Protest Camp
  • 6 days Husky Energy Set To Restart Pipeline
  • 6 days Russia, Morocco Sign String Of Energy And Military Deals
  • 6 days Norway Looks To Cut Some Of Its Generous Tax Breaks For EVs
  • 6 days China Set To Continue Crude Oil Buying Spree, IEA Says
  • 6 days India Needs Help To Boost Oil Production
  • 6 days Shell Buys One Of Europe’s Largest EV Charging Networks
  • 6 days Oil Throwback: BP Is Bringing Back The Amoco Brand
  • 6 days Libyan Oil Output Covers 25% Of 2017 Budget Needs
  • 6 days District Judge Rules Dakota Access Can Continue Operating
  • 7 days Surprise Oil Inventory Build Shocks Markets
  • 7 days France’s Biggest Listed Bank To Stop Funding Shale, Oil Sands Projects
  • 7 days Syria’s Kurds Aim To Control Oil-Rich Areas
  • 7 days Chinese Teapots Create $5B JV To Compete With State Firms
  • 7 days Oil M&A Deals Set To Rise
  • 7 days South Sudan Tightens Oil Industry Security
Alt Text

“Grassoline” The Jet Fuel Of The Future?

Researchers have developed a process…

Alt Text

Is Cactus Gas The Future Of Biofuel?

A Mexican green energy startup,…

Alt Text

New Tech Could Turn Seaweed Into Biofuel

Scientists discovered an unlikely abundant…

Brian Westenhaus

Brian Westenhaus

Brian is the editor of the popular energy technology site New Energy and Fuel. The site’s mission is to inform, stimulate, amuse and abuse the…

More Info

Genetically Altering Plants to Produce more Food and Fuel

Scientists from Wageningen University in the Netherlands have concluded that it is possible to develop plants that produce even more food and fuel by reducing the level of pigments.

It’s been known for well over half a century that the energy conversion efficiency of incident photons to chemical energy by leaves is wavelength dependent.  This is due to several processes that can be divided into two classes. First, the absorption of incident irradiance by a leaf is wavelength dependent due to the different absorption spectra of the different leaf pigments. Second, even on an absorbed light basis, different wavelengths have different quantum yields for CO2 ?xation or O2 evolution: Red light at 600 to 640 nm has the highest quantum yield, whereas blue and green light at 400 to 570 nm are considerably less efficient in driving photosynthesis.

The Wageningen University team’s paper (a downloadable pdf for now) published in the journal The Plant Cell shows by reducing the level of pigments which make no contribution to photosynthesis net plant productivity can be improved.

Their conclusion is based on research into the effectiveness of photosynthesis in various light conditions.  The scientists discovered that leaf pigments not directly involved in photosynthesis ‘dissipate’ light by absorption rather than using it effectively.

Gentically Modified Plants
Scientists have concluded that it is possible to develop plants that produce even more food by reducing the level of pigments which make no contribution to photosynthesis. Image Credit: © Harald Lange / Fotolia)

Research into the effectiveness of photosynthesis in various light conditions has answered some of the most important questions. The research has shown that plants efficiently adapt their leaves to the light colours present where they grow. In this way they use the available light as effectively as possible. The research also demonstrated how specific combinations of various light colours result in more photosynthesis than the sum of the individual light colours. This insight is relevant, among other things, for minimizing energy consumption in the lighting of horticultural greenhouses.

The prime point is leaf pigments not directly involved in photosynthesis ‘dissipate’ useable light. While these non-photosynthetic pigments do absorb light, they do not use it for photosynthesis.

That discovery could lead to the development of plants that produce more food by reducing the amount of these non-photosynthetic pigments. That would first primarily apply to ‘protected’ cultivation, such as in greenhouses, as at least some of the non-photosynthetic pigments have a protective function, for instance against too much UV light or insect damage. These factors are less relevant in indoor cultivation than in open fields.

Considering the conditions across the planet from the tropics to the arctic, elevations, weather conditions and the other factors, tailoring plant genetics can be improved in yet another way.

The scientists have shown that understanding the different wavelengths of light available in a location applied to plant breeding can enhance quantum yields substantially.  That would please those seeking to capture CO2 as well as produce more food and fuel.

The paper doesn’t offer numbers of the potential, yet it’s easy to grasp that humanity has moved plants from their native locations, worked on the hybridization, and optimized yields in major ways.
The team from Wageningen University shows us that the effort is far from finished and new understanding can push production even further.

By. Brian Westenhaus

Source: Making Better Plants for Food and Fuel




Back to homepage


Leave a comment
  • Eddy on June 21 2012 said:
    The answer is true.Photosynthesis a set of chimceal reactions only a plant containing the pigment chlorophyll can perform. The plant takes energy from the sun that comes in contact with leaves in the form of light, combines it with carbon dioxide from the air and water from the soil to make a sugar called glucose. They use this as their food source and are the only living creatures on Earth that have this ability. Every other life form depends on plants for food supply.generally, is the synthesis of sugar from light, carbon dioxide and water, with oxygen as a waste product. It is arguably the most important biochimceal pathway known; nearly all life depends on it. It is an extremely complex process, comprised of many coordinated biochimceal reactions. It occurs in higher plants, algae, some bacteria, and some protists, organisms collectively referred to as photoautotrophs.

Leave a comment




Oilprice - The No. 1 Source for Oil & Energy News